Research on Fuel Cell Vehicle Industry Development

Scan the QR code to get free PDF edition!

The following terms are used in this report

Acronym	Definition					
FCEV / FCV	Fuel cell electric vehicles / fuel cell vehicles					
BEV	Battery electric vehicles					
PHEV	Plug-in hybrid electric vehicles					
PEMFC	Proton exchange membrane fuel cell					
DMFC	Direct methanol fuel cell					
SOFC	Solid oxide fuel cell					
AFC	Alkaline fuel cell					
MCFCI	Fusion carbonate fuel cell					
PAFC	Phosphoric acid fuel cell					
PFSA	Perfluorinated sulfonic acid					
PEM	Proton exchange membrane					

Over 200 of China's Fuel Cell Electric Vehicles Entered Demonstration Operation Sep. 5, 2016

Source: Yangzi River Daily

The 2016 Taiwan and China Mainland Summit Forum of Fuel Cell Technology & Industry Development was held recently in Wuhan Development Zone (Hannan District), which was co-sponsored by China Electrical Equipment Industry Fuel Cell Branch and Taiwan Institute of Economic Research Fuel Cell Promoting Office.

Many international leaders like Audi, Toyota and Nissan all keep investing and making breakthroughs in the research of fuel cell vehicle industry and try to improve its degree of commercialization, as well as companies at home. Over 200 fuel cell electric vehicles were put into operation, which serviced the Beijing Olympic Games and Shanghai World Expo, with travelling distance over 100,000 km.

2

Abstracts

Fuel Cell Vehicles are Major Users of Hydrogen Fuel Cell

- Currently the proton exchange membrane fuel cell (PEMFC) is widely used in fuel cell vehicles, which uses pure hydrogen as fuel, also known as hydrogen fuel cell
- In comparison with lithium battery vehicles, fuel cell electric vehicles have longer endurance and shorter charging time. The cost of fuel cell electric vehicles is the lowest compared to diesel vehicles and Battery Electric Vehicles

China's Fuel Cell Vehicle Market is in Its Introduction Period, and Fuel Cell System, Hydrogen Production, Storage and Refueling Station are Its Key Parts

- Fuel cell system represents 63% of total cost. China's fuel cell technology is still immature compared to foreign countries
- China's hydrogen production is still in the exploratory stage, and cost is expected to fall further
- Hydrogen storage bottle is decisive for endurance. China has mastered technology for 35Mpa hydrogen storage bottle, but using 70Mpa bottle is the industry trend
- · Hydrogen refueling stations are scarce in China, and core device still relies on import

Development of China's Fuel Cell Industry is Still Restricted as Technology for Key Parts is 5-10 Years Backward than Foreign Countries

- Fuel cell pile, air circulation system and hydrogen air circulation system account for 91% of total cost of fuel cell system. Such cost is still high in China due to weak key technology
- Fuel cell pile consists of proton exchange membrane, bipolar plate and catalyst. In China, proton exchange membrane
 almost realized industrialization, and graphite bipolar plate technology is relatively mature, but metal bipolar plate is the
 industry trend. The catalyst relies heavily on platinum, which is expensive, and there is small-scale production in China,
 and emphasis is put on the research of ultra-low platinum catalyst or platinum-free catalyst
- Main technology of air circulation system's air compressor is helical-lobe compressor and scroll compressor. In China, no
 mature product has been developed yet.
- Hydrogen circulating device has been put into utilization in foreign countries, but it remains being developed in China, and there has been no mature product yet.

Subsidy Policy Keep Supporting Fuel Cell Vehicle Industry

- China's Fiscal Support Policy for New Energy Vehicle Promotion 2016-2020 stipulates RMB 200,000-500,000 subsidy for the fuel cell vehicle industry, which is much higher than battery electric vehicles and plug-in hybrid electric vehicle
- There are also additional policy supports the fuel cell vehicle industry and development of technology for key parts

1	Fuel Cell	6
2	Fuel Cell Vehicle	9
3	Representative Enterprises	21
4	Industry Opportunity Exploring	26

6 Types of Main Fuel Cell in the Market, and 2 Types of Vehicle Fuel Cell

Battery System	1. PEMFC	2. DMFC	3. SOFC	4. AFC	5. MCFC	6. PAFC		
Fuel	High purity hydrogen	Hydrogen or liquid methyl alcohol	Gas, methane	High purity hydrogen	Gas, methane	Mainly hydrogen		
Catalyst	Platinum	Platinum- ruthenium	Low reliance on platinum	Non precious metals Normally nickel	Precious metals	Platinum		
Operating Temperature	60-100	100	1000-1200	100	500-800	60-200		
Catalyst	Solid/ PFSA polymer film	Solid/polymer film	Solid/zirconium dioxide ceramic material	Liquid/aqueous potassium hydroxide solvent	Liquid/carbonate carbonate solvent	Liquid/phosphoric acid solvent		
Application Fields	s Automobile Consumer electronics, material transporters		Large and small power generation station	Aerospace	Large power generation station	100-400KW fixed power generation station, large vehicles		
2.Two Types	of Vehicle Fue	el Cell						
 Two main types of fuel cell are suitable for transportation: Proton Exchange Membrane Fuel Cell (PEMFC) & Direct Methanol Fuel Cell (DMFC) The reason why they are suitable is that their operating temperature and relatively rapid dynamic response as vehicle energy source meet vehicle's requirement Currently the proton exchange membrane fuel cell (PEMFC) is widely used in fuel cell vehicles, which uses pure hydrogen as fuel, also known as hydrogen fuel cell 								

© SMM. All rights reserved.

Hydrogen Fuel Cell-The Main Type of Fuel Vehicles Power in the Future

1 Fuel Cell	6
2 Fuel Cell Vehicle	9
3 Representative Enterprises	21
4 Industry Opportunity Exploring	26

Main Technical Proposal for Fuel Cell Vehicle is Mixed Type of Fuel Cell and Storage Battery

	Technical proposal	Feature		
	Fuel Cell Engine Driven Only	 High power and high cost Power changes with load. Efficiency of fuel cell system is low when vehicle is low loading Slow dynamic response, which will affect accelerating ability No regenerative brake 	•	Abandoned by most companies
	Mixed Type of Fuel Cell & Storage Battery (Full Power Type)	 Fuel cell is major energy source Storage battery is unable to meet requirement of driving with no load Have advantages when keep high-power output for a long time No need for circumscribed charging unit 	•	International Main technical proposal
3	Mixed Type of Fuel Cell & Storage Battery (Plug-in Type)	 Relatively low battery power rating Storage battery can meet demand for a pure- electric-driving drive in certain distance Circumscribed charging 	•	Used by SAIC
	Fuel Cell Engine + Super Capacitor	 Fuel cell is major energy source and super capacitor provides peak power Super capacitor has good instant charging and discharging ability, long cycle life and low cost. But storage capacity is limited, with big voltage fluctuation 	•	Used by Volkswagen's HY.POWER
	Fuel Cell Engine +Storage Battery + Super Capacitor	 Lower requirements for power of fuel cell and storage battery Super capacitor has high current discharge ability when the temperature is low Longer service life of battery 	•	Both Structure and Operatior are Complicated

Note: Super capacitor is a new type of energy storage device, with high power density and short charging time

Fuel Cell Vehicles may be More Economical & Convenient

RMB 0.96/kWh

Lithium Battery Electric Vehicle Fuel Cell Electric Vehicle Similarity Zero fuel consumption, zero release and low noise Zero fuel consumption, zero release and low noise • **Performance comparison** Endurance: 400km Endurance: Above 500km Compared to Charging Time: 30 minutes for fast charge, 8 hours for trickle charge **Charging Time:** 3 minutes Lithium Battery Performance at Low Temperature: Weakens significantly Performance at Low Temperature: Still good Energy Exchange Efficiency: High **Energy Exchange Efficiency:** Over 60% • Electric Safety: Overcharging, fire at high temperatures • **Safety:** Risk of leakage during hydrogenation Vehicles. Fuel Cell **Cost comparison** Vehicles may be Purchase Cost: For vehicles made in china, below RMB Purchase Cost: For vehicles made in china, above RMB **More Convenient** 300,000/vehicle, a RMB 30,000-55,000 subsidy can be set off 600,000/vehicle, a RMB 200,000 subsidy can be set off · Working Cost: Tesla model s 60 (battery capacity 60kwh, • Working Cost: Toyota Mirai, hydrogenation cost JPY 5000 once, supporting endurance 500km, which means endurance 390km), RMB 0.075/km providing electricity prices during third level of low demand period in shanghai RMB 0.65/km (based on exchange rate of 0.65) Infrastructure construction comparison Hydrogen Refueling Station: There are only three Charging Station: 81,780 public chargers has constructed as of H1 2016 which are all at demonstration stage at home, located in in China, and aims to complete 4.80 million chargers by 2020 Beijing, shanghai and Zhengzhou, and there remains no clear government construction plan now Note: Red words denote advantage Cost per 100 kilometers Compared to Consumption Vehicle model Fuel cost Cost **Diesel Vehicle &** Diesel Vehicle RMB 2.04/kWh 9.2L/100km RMB 47/100km **BEV. fuel cell** BEV RMB 1.16/kWh 23kWh/100km RMB 26.7/100km vehicles may be

23kWh/100km

RMB 22/100km

Hydrogen Fuel Cell Vehicle

Source: SMM

more economical

Fuel Cell Vehicle Industry is in Introduction Period, Restricted by Backward Key Part Technology

2000s

Tech R&D

Stage

2010s

2010 Shanghai Expo

used hydrogen FCV

as demonstration

vehicles

2020s

|| In 2014, Roewe 750

LFCV was appointed as

china's technical

representative

Popularization stage

Overall, hydrogen FCV at home is 5-10 years backward than aboard

In 2008, hydrogen FCV

were used as

demonstration vehicles for

Beijing Olympic

1990s

1960s

China

1970s

1980s

In 2001,

R&D started in

China

2030s

Commercialization

is expected

in 2030

Government Accelerates Fuel Cell Vehicle Development(1): Policy

Policy type	Time	Document Name	Main content
	2001	863 Plan-Major Special Projects for Electric Vehicle	FCV, BEV and PHEV were included in the "Three Horizontal and Three Vertical"
Planning Target	2015	Made in China 2025	Three-step development for fuel cell vehicle
	2016	Guidance Directory of major Products and Services of Strategic Emerging Industries	Introduction of fuel cell system and core parts, FCV, hydrogen charging & storage facility
Technology	2014	Plan for electric vehicle in the 13th Five-Year Plan Period	Improving surface modification technology for metal bipolar plate and durability technology for vehicle fuel cell, and pushing hydrogen refueling station construction and FCV demonstration operation works in the next few years
Guidance	2016	Action Plan for Energy Technology Revolution Innovation (2016-2030)	Mastering efficient hydrogen preparation, purification, storage and transportation technology, realizing utilization of hydrogen energy and fuel cell technology in energy and hydrogen refueling station fields
Tax Proforman	2011	China Vehicle and Vessel Tax Law	Vehicle and vessel tax is exempt for fuel cell vehicle
Tax Preference	2014	Notice Regarding Exemption of Purchase Tax for New Entergy Vehicle	Purchase tax for new energy vehicle was exempted during September 1, 2014 and December 31, 2017.12
	2009	Provisional Regulations on Fiscal Subsidy Funds for	Zero release electric and fuel cell vehicles enjoy RMB 60,000-600,000 fiscal subsidy
Fiscal	2014	Charging Facility for New Energy Vehicle	Newly manufactured FCV hydrogen refueling stations that meet national standard and with daily hydrogenation capacity no less than 200 kg enjoy RMB 4 million award
Subsidies	2015	Guidance Directory of Major Products and Services of Strategic Emerging Industries	Fuel cell passenger vehicles will enjoy RMB 200,000 subsidy during 2016-2020, with RMB 300,000-500,000 for commercial vehicles

Made in China 2025- Development Strategy for FCV

Strategy	Goal	·
Step 1: Domestication of Key Material And Parts	By 2020, realizing security of quality in mass production for fuel cell key materials	 Note: Chinese government has already planned to develop FC early as 2001 "863 Plan-Major Special Projects for Elected Statement of the second statem
Step 2: Increasing Performance of Fuel Cell and Cell Pile	By 2020, service life of fuel cell will reach 5,000 hours, with power density over 2.5kw/L, endurance	Vehicle" identified "Three Vertical and Three Horizontal" "three vertical" includes BEV,PGEV and FCV
	reaching 500km, charging time below 3minutes, and minimum starting temperature below -30°C	 In 2015, "Made in China 2025" Plan issued, proposed a three-step FCV development strategy
Step 3: Expanding FCV Operation Scale	By 2020, producing 1000 FCVs by and improving hydrogen production and hydrogenation facility	 By 2020, achieving the target that producing 1,000 FCVs carrying out the demonstration operation

Government Accelerates Fuel Cell Vehicle Development(2): Subsidy

1. Subsidy for Fuel Cell Vehicles 2016-2020

FCV Types	Subsidy (RMB 10,000/vehicle)	
Passenger Vehicles	20	Subsidy for FCV is up to 20-50 per vehicle, which shows the
Light Bus and Truck	30	for the development of FCVs
Large and Medium-Sized Bus, Medium and Heavy Truck	50	

2. Subsidy Comparison for New Energy Passenger Vehicle 2016-2019

т	уре	Mileage(km)	2013	2014	2015	2016	2017	2018	2019
		2013-2015 (80≤R<150)	3.5	3.325	3.15	-	-	-	-
В	BEV	2016-2020 (100≤R<150)	-	-	-	2.5	2	2	1.5
		150≤R<250	5	4.75	4.5	4.5	3.6	3.6	2.7
		R≥250	6	5.7	5.4	5.5	4.4	4.4	3.3
PI	HEV	R≥50	3.5	3.325	3.15	3	2.4	2.4	1.8
F	CV	-	20	19	18	20	20	20	20

The Key to the Fuel Cell System

and super capacitor. Traditional hydrogen transportation is widely used in FCV industry © SMM. All rights reserved.

China Fuel Cell Technology Remains Immature

1. Target And Status Quo Of Fuel Cell Technology

Technical Indicator	nternational Statu in 2015	s DOE Target in 2020	DOE N Long-Term Targe	lade In China et Target
Fuel cell system				
Power density (W/L)	640	650	850	-
Specific power (W/kg)	659	650	650	-
Cost for annual production of 500,000 units (\$ /	′kw) 53	40	30	-
Life (hours)	5000	5000	8000	-
Non-assist cold boot temperature (°C)	-30	-30	-30	≤-30
Fuel cell pile				
Pile power density (W/L)	3100	2250	2500	2500
Specific power (w/kg)	(Toyota)	2000	2000	-
Cost for annual production of 500,000 units (\$/h	<w) 2100<="" td=""><td>20</td><td>15</td><td>-</td></w)>	20	15	-
Durability (hours)	(Nissan)	5000	8000	5000
	26			
Note: DOE means US department of energy	3900			

 Overseas key technology has almost reached or exceeded the target value

Parts of the key technology still lacks clear development plan in China

The representative FCVs in

China performs obviously not as good as FCVs overseas in many key

indicators, such as power density, endurance, cold boot temperatures and hydrogen storage capacity

•

Note: DOE means US department of energy

Sources: DOE multi-year research, development, and demonstration plan 2016, made-in-china 2025, SMM

2. Comparison of Key Indicators in China and Overseas

Representatives	Power Density (kw/L)	Endurance (km)	Cold Boot Temperature (°C)	Hydrogen Storage Capacity(kg)
Overseas (Japan: Toyota Mirai)	3.1	>500	-37	5.0
Overseas (Germany: Daimler F125	5) -	1000	-25	7.5
Domestic (Roewe 950 Fuel Cell)	<1	400	-20	4.18

Sources: evdays.com , diandong.com , SMM

Lack of Key Part Technology Restricts Fuel Cell Localization in China

Lack of key technology on fuel cell pile, air circulation system and hydrogen circulatory system is the current situation in China, which
account for most of the fuel cell system cost

Fuel cell system cost structure

Note: PEMFC mainly uses Pt/C catalyst, which consists of pt particles (3-5nm) and active carbon with large specific surface area which support the particles

Hydrogen Production Technology is at R&D Stage and its Cost is Expected to Decrease Further

• Hydrogen as a raw material of fuel cell is an important part of the industry, but nature of hydrogen is very rare. So hydrogen production technology needs to take factors into consideration, like environment, economics and practicality

Current Technology					Technology Target
1 Short-term				2	Medium-term
Process Route	Hydrogen Cost	Applicable Scale		•	Technology trend: Hydrogen production technology is based
Natural Gas Conversion (Including Refinery Gas)	RMB 0.8-1.5/Nm ³	200-20×104			important renewable energy
Naphtha Conversion (Including Liquefied	RMB 0.7-1.6/Nm ³	500-20×104	Low cost, wide application, but polluting		Technical difficulties: Low quality density and energy density, and high tar content after biomass gasification are
Coal Gasification (Including Coke)	RMB 0.6-1.2/Nm ³	1000-20×104	High cost.		two major problems
Liquid Ammonia Decomposition	RMB 2.0-2.5/Nm ³	10-200	immature technology,	3	Long-term
Methanol Decomposition	RMB 1.8-2.5/Nm ³	50-500	environmental	•	Technology trend: Zero-emission hydrogen production
Water Electrolysis	RMB 3.0-4.0/Nm ³	10-200		the long term. Percent conversion of the technology is still low,	
Source: galaxy securities			'		solar energy hydrogen refueling station, which serves as
Hydrogen can be pro synthesis ammonia, sy	duced and separat	ed out during the mol and petroleum	nanufacturing of		provisional and complementary hydrogen fuel replenishment method
 Cost of hydrogen is charge. Based on oil of 5000 to fill up Toyota I RMB 0.5/km, with end RMB 0.7-0.8/km. If hydrogen of cost of FCV consumer 	ower than gasoline orporation's liquid hy Mirai's 5kg hydrogen lurance of 650km. Re drogen production co 's will fall more obvio	e, calculated based of rdrogen prices in Ja tank, or RMB 298. egular 2.0T gasoline ost decrease in the f usly	on daily fuel pan, it costs JPY Prices are below e vehicle will cost future, marginal	•	Technical difficulties: Solar energy hydrogen production technology has low percent conversion , with research emphasis on photocatalysis and the composition of efficient and long-life photocatalyst.

Note: Nm³ means normal cubic meter, which is gas volume unit with 0 degree centigrade and 1 standard atmospheric pressure

Hydrogen Storage Bottle Technology Has Large Room to Improve

· Hydrogen storage bottle is decisive for endurance, and the industry tend is 70mpa hydrogen storage bottle

Few Hydrogen Refueling Station in China and Key Devices Still Rely on Import

 The Ministry of Finance (MoF), Ministry of Industry & Information Technology (MIIT) and National Development & Reform Commission (NDRC) released the Notice Regarding Award to New Energy Vehicle Charging Facility Construction in November 2014, stipulating that each newly constructed fuel cell car hydrogen refueling station that meets national standard and with daily hydrogenation capacity no less than 200kg will receive RMB 4 million as an award during 2013~2015

1 Fuel Cell	6
2 Fuel Cell Vehicle	9
3 Representative Enterprises	21

Overseas Representative: Toyota

Development of FCV	Start to R&D of FCV	Toyota signed FCV memorandum of understanding	Jointly developing fuel cell system with BMW, and making breakthrough in PEMFC	Launched FCV Mirai	Providing 5680 fuel cell system patents for free	Planning to sell 10,000 vehicles of Mirai
	1992 -	→ 2012 -	→ 2013 →	2014 —	▶ 2015	→ 2020
Representative Products	Toyota Mirai (First Selling Price in subsidy Fuel Storage M hydrogen storag hydrogen and a Maximum Powe Hydrogenation	Launch on December 1 Japan: JPY 6.70 millior ethod: One large and o ge tank with capacity of re three-decker structu er Output :114kw Time:3 minutes	15, 2014) n, with JPY 2 million govern ne small high-pressure 122.4L, which can hold 5 k re	ment • Endurance • Max Speed • Speed Acco g of • Output Plar vehicles(20 (2016)→30	:: 650km : >160km/h eleration: 9s/100km h: 700 15)→2000 vehicles 00 vehicles(2017)	
Technology	 Toyota put emp Electric vehicles Toyota strived to Toyota uses exp secure fire resist 	hasis on development of s' endurance will barely o reduce platinum utiliza banded graphite-contain tance	of hybrid power and fuel cel make breakthrough without ation by improving cladding ned fire-proof polyurethane	l vehicles, as it saw lir t reducing load technology, so as to sheet to protect impa	nited growth in lithiur ower production cost ct resistance polyure	n battery vehicles. t of fuel cell vehicles thane sheet, so as to
Hydrogenation Solution	 In response to g 2015 to support with 50% from g Toyota cooperative vehicle before to can meet the de 	government requirement t hydrogenation station government subsidy and ted with Air Products in he newly constructed h emand of over 30 vehic	nt, Toyota jointly invest JPY project. Construction cost for d 30% borne by the three or December 2015 supplying ydrogen refueling station in les, and fill half of Mirai's hy	6 billion with Honda a or each is expected to ompanies hydrogen fuel with m California was compl drogen storage tank	nd Nissan in July be USD 5 million, obile hydrogenation eted. Each device each time	mobile hydrogenation vehicle
Upstream Partner	Fuel Cell Modu Vehicle Assem	Ile: TOYOTA BOSHOK	CU ta Motomachi			

introduce fuel cell vehicle to Norway, Norway, Iceland and Denmark during 2014 to 2017, and construct hydrogen refueling station Three-decker high pressure hydrogen storage tank: inner layer is made of resin which seals hydrogen, middle layer is made of carbon fiber reinforced resin securing compression strength, and surface layer is made of fiberglass fortified resin which protects the surface

© SMM. All rights reserved.

Domestic Representative (1): SAIC MOTOR

Michelin Challenge Bibendum: A summit on global sustainable development, and innovativeness think tank targeting at clean, safe, convenient and economic mobility 811th Research Institute: The Shanghai Institute of Space Power Sources

Sunrise Power: A fuel cell company, with a 34% stake held by SAIC, engaging in critical material, key parts and pile system of proton exchange membrane fuel cell engine system © SMM. All rights reserved.

Domestic Representative (2): Yutong

睿控3.0: Yutong's exclusive new energy technology

© SMM. All rights reserved.

Domestic Representative (3): Beiqi Foton

Note: The 863 plan is national hi-tech R&D plan, which was put forward in March 1986 AUV and AUMARK are Beiqi Foton's automobile brands

4 Industry Opportunity Exploring	26
3 Representative Enterprises	21
2 Fuel Cell Vehicle	9
1 Fuel Cell	6

Industry Opportunity Exploring

- 1. Fuel Cell Technology Companies:
- Sunrise Power: the company was founded in April 2001, and is the first professional joint-stock company in china dealing with developing of fuel cell products. Sunrise power co., Ltd specialize in developing PEM fuel cell technology for vehicle power and backup power etc., And supplies solutions of PEM fuel cell stack components, FC stacks, FC
- Shanghai Shen-li High Tech Co., Ltd. : Founded in June 1998, Is one of the key private companies engaging in PEM fuel cell
- SAIC also produces fuel cell system for its own use

2. Suppliers of Key Parts of Fuel Cell

- Snowman: its holding company OPCON has air circulation system and helical-lobe compressor technologies
- Jingcheng Machinery Electric Company: it has 70mpa hydrogen storage bottle technology
- 3. Technology Companies in Hydrogen Refueling Station Field
- Chengdu Huaqi Houpu Holdings: A natural gas device manufacturer, which has successfully developed hydrogen refuel device and entered product test stage
- Furui Special Equipment: The company has begun technology development for hydrogen utilization equipment, and has water electrolysis hydrogen production technology and device

SMM is a leading market research and consulting company in China's nonferrous metals, steel and high-performance materials industries, and is dedicated to providing professional survey, analysis, strategy and management advice to customers at home and abroad.

SMM has a team of professionals and consulting talents with rich industry experience, who have won recognition from domestic and overseas clients.

For more information about our products and services, please contact:

Nicholas Ye Managing Director +86-1381 8901 855 +86-21-5166 6861 Nicholas.Ye@smm.cn Add: 7th FL in South Section, Building 9, Lujiazui Software Park, No. 20, Lane 91, E'Shan Road, Pudong New Area, Shanghai, China.

